Preface
PartⅠLocalTransformationGroups
1Preliminaries
1.1Changesofframesofreferenceandpointtransformations
1.1.1Translations
1.1.2Rotations
1.1.3Galileantransformation
1.2Introductionoftransformationgroups
1.2.1Definitionsandexamples
1.2.2Differenttypesofgroups
1.3Someusefulgroups
1.3.1Finitecontinuousgroupsonthestraightline
1.3.2Groupsontheplane
1.3.3GroupsinIRn
ExercisestoChapter1
2One-parametergroupsandtheirinvariants
2.1Localgroupsoftransformations
2.1.1Notationanddefinition
2.1.2Groupswritteninacanonicalparameter
2.1.3Infinitesimaltransformationsandgenerators
2.1.4Lieequations
2.1.5Exponentialmap
2.1.6Determinationofacanonicalparameter
2.2Invariants
2.2.1Definitionandinfinitesimaltest
2.2.2Canonicalvariables
2.2.3Constructionofgroupsusingcanonicalvariables
2.2.4Frequentlyusedgroupsintheplane
2.3Invariantequations
2.3.1Definitionandinfinitesimaltest
2.3.2Invariantrepresentationofinvariantmanifolds
2.3.3ProofofTheorem
2.3.4ExamplesonTheorem
ExercisestoChapter2
3Groupsadnuttedbydifferentialequations
3.1Preliminaries
3.1.1Differentialvariablesandfunctions
3.1.2Pointtransformations
3.1.3Frameofdifferentialequations
3.2Ptolongationofgrouptransformations
3.2.10ne-dimensionalcase
3.2.2Prolongationwithseveraldifferentialvariables
3.2.3Generalcase
3.3Prolongationofgroupgenerators
3.3.10ne-dimensionalcase
3.3.2Severaldifferentialvariables
3.3.3Generalcase
3.4Firstdefinitionofsymmetrygroups
3.4.1Definition
3.4.2Examples
3.5Seconddefinitionofsymmetrygroups
3.5.1Definitionanddeterminingequations
3.5.2Determiningequationforsecond-orderODEs
3.5.3Examplesonsolutionofdeterminingequations
ExercisestoChapter3
4Liealgebrasofoperators
4.1Basicdefinitions
4.1.2Propertiesofthecommutator
4.1.3Propertiesofdeterminingequations
4.2Basicproperties
4.2.1Notation
4.2.2Subalgebraandideal
4.2.3Derivedalgebras
4.2.4SolvableLiealgebras
4.3Isomorphismandsimilarity
4.3.1IsomorphicLieakebras
4.3.2SimilarLiealgebras
4.4Low-dimensionalLiealgebras
4.4.10ne-dimensionalalgebras
4.4.2Two-dimensionalalgebrasintheplane
4.4.3Three-dimensionalalgebrasintheplane
4.4.4Three-dimensionalalgebrasinlR3
4.5Liealgebrasandmulti-parametergroups
4.5.1Definitionofmulti-parametergroups
4.5.2Constructionofmulti-parametergroups
5Galoisgroupsviasymmetries
5.1Preliminaries
5.2Symmetriesofalgebraicequations
5.2.1Determiningequation
5.2.2Firstexample
5.2.3Secondexample
5.2.4Thirdexample
5.3ConstructionofGaloisgroups
5.3.1Firstexample
5.3.2Secondexample
5.3.3Thirdexample
5.3.4Concludingremarks
AssignmenttoPartI
PartIIApproximateTransformationGroups
6.1Motivation
6.2AsketchonLietransformationgroups
6.2.10ne-parametertransformationgroups
6.2.2Canonicalparameter
6.2.3GroupgeneratorandLieequations
6.3ApproximateCauchyproblem
6.3.1Notation
6.3.2DefinitionoftheapproximateCauchyproblem
7Approximatetransformations
7.1Approximatetransformationsdefined
7.2Approximateone-parametergroups
7.2.1Introductoryremark
7.2.2Definitionofone-parameterapproximate
7.2.3Generatorofapproximatetransformationgroup
7.3Infinitesimaldescription
7.3.1ApproximateLieequations
7.3.2Approximateexponentialmap
ExercisestoChapter7
8Approximatesymmetries
8.1Definitionofapproximatesymmetries
8.2Calculationofapproximatesymmetries
8.2.1Determiningequations
8.2.2Stablesymmetries
8.2.3Algorithmforcalculation
8.3.2ApproximatecommutatorandLiealgebras
9.1Integrationofequationswithasmallparameterusingapproximatesymmetries
9.1.1Equationhavingnoexactpointsymmetries
9.1.2Utilizationofstablesymmetries
9.2Approximatelyinvariantsolutions
9.2.1Nonlinearwaveequation
9.2.2ApproximatetravellingwavesofKdVequation
9.3Approximateconservationlaws
ExercisestoChapter9
AssignmenttoPartII
Bibliography
Index