MultilevelModels:AppficationsUsingSASiswritteninnontechnicalterms,focusesonthemethodsandapplicationsofvariousmultilevelmodels,includinglinermultilevelmodels,multilevellogisticregressionmodels,multilevelPoissonregressionmodels,multilevelnegativebinomialmodels,aswellassomecutting-edgeapplications,suchasmultilevelzero-inflatedPoisson(ZIP)model,randomeffectzero-inflatednegativebinomialmodel(RE-ZINB),mixed-effectmixed-distributionmodels,bootstrappingmultilevelmodels,andgroup-basedtrajectorymodels.Readerswilllearntobuildandapplymultilevelmodelsforhierarchicallystructuredcross-sectionaldataandlongitudinaldatausingtheinternationallydistributedsoftwarepackageStatisticsAnalysisSystem(SAS).DetailedSASsyntaxandoutputareprovidedformodelapplications,providingstudents,researchscientistsanddataanalystswithreadytemplatesfortheirapplications.