PrefacetotheSecondCorrectedPrinting
PrefacetotheFirstPrinting
Introduction
FUNDAMENTALFIXED-POINTPRINCIPLES
CHAPTER1
TheBanachFixed-PointTheoremandlterativeMethods
1.1.TheBanachFixed-PointTheorem
1.2.ContinuousDependenceonaParameter
1.3.TheSignificanceoftheBanachFixed-PointTheorem
1.4.ApplicationstoNonlinearEquations
1.5.AcceleratedConvergenceandNewtonsMethod
1.6.ThePicard-Lindel6fTheorem
1.7.TheMainTheoremforIterativeMethodsforLinearOperator
Equations
1.8.ApplicationstoSystemsofLinearEquations
1.9.ApplicationstoLinearIntegralEquations
CHAPTER2
TheSchauderFixed-PointTheoremandCompactness
2.1.ExtensionTheorem
2.2.Retracts
2.3.TheBrouwerFixed-PointTheorem
2.4.ExistencePrincipleforSystemsofEquations
2.5.CompactOperators
2.6.TheSchauderFixed-PointTheorem
2.7.PeanosTheorem
2.8.IntegralEquationswithSmallParameters
2.9.SystemsofIntegralEquationsandSemilinearDifferential
Equations
2.10.AGeneralStrategy
2.11.ExistencePrincipleforSystemsofInequalities
APPLICATIONSOFTHEFUNDAMENTAL
FIXED-POINTPRINCIPLES
CHAPTER3
OrdinaryDifferentialEquationsinB-spaces
3.1.IntegrationofVectorFunctionsofOneRealVariablet
3.2.DifferentiationofVectorFunctionsofOneRealVariablet
3.3.GeneralizedPicard-LindeltfTheorem
3.4.GeneralizedPeanoTheorem
3.5.GronwalrsLemma
3.6.StabilityofSolutionsandExistenceofPeriodicSolutions
3.7.StabilityTheoryandPlaneVectorFields,ElectricalCircuits,
LimitCycles
3.8.Perspectives
CHAPTER4
DifferentialCalculusandtheImplicitFunctionTheorem
4.1.FormalDifferentialCalculus
4.2.TheDerivativesofFrtchetandGiteaux
4.3.SumRule,ChainRule,andProductRule
4.4.PartialDerivatives
4.5.HigherDifferentialsandHigherDerivatives
4.6.GeneralizedTaylorsTheorem
4.7.TheImplicitFunctionTheorem
4.8.ApplicationsoftheImplicitFunctionTheorem
4.9.AttractingandRepellingFixedPointsandStability
4.10.ApplicationstoBiologicalEquilibria
4.11.TheContinuouslyDifferentiableDependenceoftheSolutionsof
OrdinaryDifferentialEquationsinB-spacesontheInitialValues
andontheParameters
4.12.TheGeneralizedFrobeniusTheoremandTotalDifferential
Equations
4.13.DiffeomorphismsandtheLocalInverseMappingTheorem
4.14.ProperMapsandtheGlobalInverseMappingTheorem
4.15.TheSurjectiveImplicitFunctionTheorem
4.16.NonlinearSystemsofEquations,Subimmersions,andtheRank
Theorem
4.17.ALookatManifolds
4.18.SubmersionsandaLookattheSard-SmaleTheorem
4.19.TheParametrizedSardTheoremandConstructiveFixed-Point
Theory
CHAPTER5
NewtonsMethod
5.1.ATheoremonLocalConvergence
5.2.TheKantoroviSemi-LocalConvergenceTheorem
CHAPTER6
ContinuationwithRespecttoaParameter
6.1.TheContinuationMethodforLinearOperators
6.2.B-spacesofH61derContinuousFunctions
6.3.ApplicationstoLinearPartialDifferentialEquations
6.4.Functional-AnalyticInterpretationoftheExistenceTheoremand
itsGeneralizations
6.5.ApplicationstoSemi-linearDifferentialEquations
6.6.TheImplicitFunctionTheoremandtheContinuationMethod
6.7.OrdinaryDifferentialEquationsinB-spacesandtheContinuation
Method
6.8.TheLeray-SchauderPrinciple
6.9.ApplicationstoQuasi-linearEllipticDifferentialEquations
CHAPTER7
PositiveOperators
7.I.OrderedB-spaces
7.2.MonotoneIncreasingOperators
7.3.TheAbstractGronwallLemmaanditsApplicationstoIntegral
Inequalities
7.4.Supersolutions,Subsolutions,IterativeMethods,andStability
7.5.Applications
7.6.MinorantMethodsandPositiveEigensolutions
7.7.Applications
7.8.TheKrein-RutmanTheoremanditsApplications
7.9.AsymptoticLinearOperators
7.10.MainTheoremforOperatorsofMonotoneType
7.11.ApplicationtoaHeatConductionProblem
7.12.ExistenceofThreeSolutions
7.13.MainTheoremforAbstractHammersteinEquationsinOrdered
B-spaces
7.14.EigensolutionsofAbstractHammersteinEquations,Bifurcation,
Stability,andtheNonlinearKrein-RutmanTheorem
7.15.ApplicationstoHammersteinIntegralEquations
7.16.ApplicationstoSemi-linearEllipticBoundary-ValueProblems
7.17.ApplicationtoEllipticEquationswithNonlinearBoundary
Conditions
7.18.ApplicationstoBoundaryInitial-ValueProblemsforParabolic
DifferentialEquationsandStability
CHAPTER8
AnalyticBifurcationTheory
8.1.ANecessaryConditionforExistenceofaBifurcationPoint
8.2.AnalyticOperators
8.3.AnAnalyticMajorantMethod
8.4.FredholmOperators
8.5.TheSpectrumofCompactLinearOperators
(Riesz-SchauderTheory)
8.6.TheBranchingEquationsofLjapunov-Schmidt
8.7.TheMainTheoremontheGenericBifurcationFromSimpleZeros
8.8.ApplicationstoEigenvalueProblems
8.9.ApplicationstoIntegralEquations
8.10.ApplicationtoDifferentialEquations
8.11.TheMainTheoremonGenericBifurcationforMultiparametric
OperatorEquations——TheBunchTheorem
8.12.MainTheoremforRegularSemi-linearEquations
8.13.Parameter-InducedOscillation
8.14.Self-InducedOscillationsandLimitCycles
8.15.HopfBifurcation
8.16.TheMainTheoremonGenericBifurcationfromMultipleZeros
8.17.StabilityofBifurcationSolutions
8.18.GenericPointBifurcation
CHAPTER9
FixedPointsofMultivaluedMaps
9.1.GeneralizedBanachFixed-PointTheorem
9.2.UpperandLowerSemi-continuityofMultivaluedMaps
9.3.GeneralizedSchauderFixed-PointTheorem
9.4.VariationalInequalitiesandtheBrowderFixed-PointTheorem
9.5.AnExtremalPrinciple
9.6.TheMinimaxTheoremandSaddlePoints
9.7.ApplicationsinGameTheory
9.8.SelectionsandtheMarriageTheorem
……
CHAPTER10
CHAPTER11
CHAPTER12
CHAPTER13
CHAPTER14
CHAPTER15
CHAPTER16
CHAPTER17
Index