List of Contributors XIII
1 Pulsed Laser Deposition for Complex Oxide Thin Film and Nanostructure 1
Chunrui Ma and Chonglin Chen
1.1 Introduction 1
1.2 Pulsed Laser Deposition System Setup 2
1.3 Advantages and Disadvantages of Pulsed Laser Deposition 3
1.4 TheThermodynamics and Kinetics of Pulsed Laser Deposition 3
1.4.1 Laser–Material Interactions 4
1.4.2 Dynamics of the Plasma 5
1.4.3 Nucleation and Growth of the Film on the Substrate Surface 5
1.5 Monitoring of Growth Kinetics 8
1.5.1 Introduction and RHEED Studies 8
1.5.2 Growth Kinetics Studies by Surface X-ray Diffraction 9
1.6 Fundamental Parameters in Thin Film Growth 10
1.6.1 Substrate Temperature 10
1.6.2 Background Gas Pressure 10
1.6.3 Laser Fluence and Ablation Area 11
1.6.4 Target–Substrate Distance 11
1.6.5 Post-Annealing 12
1.6.6 Lattice Misfit 12
1.7 Pulsed Laser Deposition for Complex Oxide Thin Film Growth 13
1.7.1 Pulsed Laser Deposition for SuperconductorThin Film 14
1.7.2 Pulsed Laser Deposition for Ferroelectric Thin Films 14
1.7.3 Pulsed Laser Deposition for Ferromagnetic Thin Film 15
1.7.4 Pulsed Laser Deposition for Multiferroics Thin Film 15
1.7.5 Interface Strain Engineering the Complex Oxide Thin Film 16
1.7.5.1 Thickness Effect 16
1.7.5.2 Substrate Effect 17
1.7.5.3 Post-Annealing 21
1.8 Pulsed Laser Deposition for Nanostructure Growth 23
1.8.1 Self-Assembled Nanoscale Structures 23
1.8.2 Geometrically Ordered Arrays 23
1.9 Variation of Pulsed Laser Deposition 24
1.10 Conclusion 24
References 25
2 Electron Beam Evaporation Deposition 33
ZhongpingWang and Zengming Zhang
2.1 Introduction 33
2.2 Electron Beam Evaporation System 35
2.2.1 Heating Principle and Characters of Electron Beams 35
2.2.1.1 Heating Principle of Electron Beams 35
2.2.1.2 Characters of Electron Beams 36
2.2.2 Equipments of Electron Beam Source 37
2.2.2.1 Filament and Electron Emission 37
2.2.2.2 Electron Beam Control 38
2.2.2.3 Power Supply, Crucibles, and Feed Systems 39
2.2.2.4 Source Materials 40
2.2.3 Application of Electron Beam Evaporation 43
2.2.3.1 Cooling of Electron Beam Gun 43
2.2.3.2 Evaporation of Source Materials by Electron Beam 43
2.2.3.3 Vacuum Deposition Process of Electron Beam Evaporation 44
2.2.3.4 Attention andWarning for Electron Beam Evaporation 45
2.3 Characterization of Thin Film 45
2.3.1 Surface Morphology by AFM 46
2.3.2 Thickness Measurement by Spectroscopic Ellipsometry 47
2.4 Summary 53
Acknowledgments 53
References 53
3 Nanostructures and Thin Films Deposited with Sputtering 59
Weiqing Yang
3.1 Introduction 59
3.2 Nanostructures with Sputtering 60
3.2.1 Oxide Nanostructures 61
3.2.1.1 Needle-Shaped MoO3 Nanowires 61
3.2.1.2 Bi2O3 Nanowires 64
3.2.2 Nitride Nanostructures 65
3.2.2.1 Graphitic-C3N4 Nanocone Array 65
3.2.2.2 InAlN Nanorods 68
3.3 Thin Films Deposited with Sputtering 71
3.3.1 Metal AlloyThin Films 73
3.3.1.1 LaNi5 AlloyThin Films 73
3.3.1.2 Ni–Mn–In AlloyThin Films 74
3.3.2 Composite Metal Oxide Thin Films 75
3.3.2.1 BiFeO3/BaTiO3 BilayerThin Films 75
3.4 Summary 76
Acknowledgments 77
References 77
4 Nanostructures and Quantum Dots Development with Molecular Beam Epitaxy 81
Wen Huang
4.1 Introduction 81
4.2 Technology of MBE 82
4.2.1 The Physics of MBE 83
4.2.2 MBE Growth Mechanisms 86
4.2.2.1 Two-Dimensional (2D) MBE Growth Mechanism 87
4.2.2.2 Three-Dimensional (3D) MBE Growth Mechanism 88
4.2.2.3 Stranskie–Krastanow 3D Growth Mechanism 90
4.3 Nanoheterostructures Fabricated by Molecular Beam Epitaxy 91
4.3.1 Semiconducting Oxide Heterostructures Grown by Laser Molecular Beam Epitaxy 91
4.3.2 Strain-Induced Magnetic Anisotropy in Highly Epitaxial Heterostructure by LMBE 96
4.4 Quantum Dots Development with Molecular Beam Epitaxy 101
4.5 Summary 103
Acknowledgments 104
References 104
5 Carbon Nanomaterials and 2D Layered Materials Development with Chemical Vapor Deposition 105
Taisong Pan
5.1 Introduction 105
5.2 Carbon Nanotube Synthesis by Chemical Vapor Deposition 106
5.2.1 Overview of CVD Process of Carbon Nanotube Growth 106
5.2.2 Control of Carbon Nanotube Structure 108
5.2.3 The Alignment of Carbon Nanotube Array 110
5.3 Graphene Synthesis by Chemical Vapor Deposition 112
5.3.1 Overview of CVD Process of Graphene Synthesis 112
5.3.2 Control of Graphene Quality 113
5.4 Metal Dichalcogenide Synthesis by Chemical Vapor Deposition 115
5.4.1 Overview of CVD Process of Metal Dichalcogenides 115
5.4.2 Growth Control of Metal Dichalcogenides in Chemical Vapor Deposition 118
5.5 Summary 119
References 120